We introduce eigenpruning, a method that removes singular values from weight matrices in an LLM to improve its performance in a particular task. This method is inspired by interpretability methods designed to automatically find subnetworks of a model which solve a specific task. In our tests, the pruned model outperforms the original model by a large margin, while only requiring minimal computation to prune the weight matrices. In the case of a small synthetic task in integer multiplication, the Phi-2 model can improve its accuracy in the test set from 13.75% to 97.50%. Interestingly, these results seem to indicate the existence of a computation path that can solve the task very effectively, but it was not being used by the original model. Finally, we plan to open-source our implementation in the camera-ready version of our work.