Trajectory prediction and generation are vital for autonomous robots navigating dynamic environments. While prior research has typically focused on either prediction or generation, our approach unifies these tasks to provide a versatile framework and achieve state-of-the-art performance. Diffusion models, which are currently state-of-the-art for learned trajectory generation in long-horizon planning and offline reinforcement learning tasks, rely on a computationally intensive iterative sampling process. This slow process impedes the dynamic capabilities of robotic systems. In contrast, we introduce Trajectory Conditional Flow Matching (T-CFM), a novel data-driven approach that utilizes flow matching techniques to learn a solver time-varying vector field for efficient and fast trajectory generation. We demonstrate the effectiveness of T-CFM on three separate tasks: adversarial tracking, real-world aircraft trajectory forecasting, and long-horizon planning. Our model outperforms state-of-the-art baselines with an increase of 35% in predictive accuracy and 142% increase in planning performance. Notably, T-CFM achieves up to 100$\times$ speed-up compared to diffusion-based models without sacrificing accuracy, which is crucial for real-time decision making in robotics.