In this study, we propose a clustering-based approach on time-series data to capture COVID-19 spread patterns in the early period of the pandemic. We analyze the spread dynamics based on the early and post stages of COVID-19 for different countries based on different geographical locations. Furthermore, we investigate the confinement policies and the effect they made on the spread. We found that implementations of the same confinement policies exhibit different results in different countries. Specifically, lockdowns become less effective in densely populated regions, because of the reluctance to comply with social distancing measures. Lack of testing, contact tracing, and social awareness in some countries forestall people from self-isolation and maintaining social distance. Large labor camps with unhealthy living conditions also aid in high community transmissions in countries depending on foreign labor. Distrust in government policies and fake news instigate the spread in both developed and under-developed countries. Large social gatherings play a vital role in causing rapid outbreaks almost everywhere. While some countries were able to contain the spread by implementing strict and widely adopted confinement policies, some others contained the spread with the help of social distancing measures and rigorous testing capacity. An early and rapid response at the beginning of the pandemic is necessary to contain the spread, yet it is not always sufficient.