The MIND dataset is at the moment of writing the most extensive dataset available for the research and development of news recommender systems. This work analyzes the suitability of the dataset for research on diverse news recommendations. On the one hand we analyze the effect the different steps in the recommendation pipeline have on the distribution of article categories, and on the other hand we check whether the supplied data would be sufficient for more sophisticated diversity analysis. We conclude that while MIND is a great step forward, there is still a lot of room for improvement.