We attempt to estimate the spatial distribution of heterogeneous physical parameters involved in the formation of magnetic domain patterns of polycrystalline thin films by using convolutional neural networks. We propose a method to obtain a spatial map of physical parameters by estimating the parameters from patterns within a small subregion window of the full magnetic domain and subsequently shifting this window. To enhance the accuracy of parameter estimation in such subregions, we employ employ large-scale models utilized for natural image classification and exploit the benefits of pretraining. Using a model with high estimation accuracy on these subregions, we conduct inference on simulation data featuring spatially varying parameters and demonstrate the capability to detect such parameter variations.