A track-before-detect (TBD) particle filter-based method for detection and tracking of low observable objects based on a sequence of image frames in the presence of noise and clutter is studied. At each time instance after receiving a frame of image, first, some preprocessing approaches are applied to the image. Then, it is sent to the detection and tracking algorithm which is based on a particle filter. Performance of the approach is evaluated for detection and tracking of an object in different scenarios including noise and clutter.