The increase in the application of the satellite has skyrocketed the number of satellites, especially in the low earth orbit. The major concern today is after the end of life, these satellites become debris which negatively affects the space environment. As per the international guidelines of the European Space Agency, it is mandatory to deorbit the satellite within 25 years of the end of life. StudSat1, which was successfully launched on 12th July 2010, is the first Pico satellite developed in India by undergraduate students from seven different engineering colleges across South India. Now, the team is developing StudSat2, which is India's first twin satellite mission having two nanosatellites whose overall mass is less than 10kg. This paper is aimed to design the propulsion system, cold gas thruster, to deorbit StudSat2 from its original orbit i.e. 600 km to lower orbit i.e. 400km. The propulsion system mainly consists of a storage tank, pipes, Convergent Divergent nozzle, and electronic actuators. The paper also gives information about the components of cold gas thruster, which have been designed in the CATIA V5, and the structural and flow analysis of the same has been done in ANSYS. The concept of Hohmann transfer has been used to deorbit the satellite and STK has been used to simulate it.