The ozone level prediction is an important task of air quality agencies of modern cities. In this paper, we design an ozone level alarm system (OLP) for Isfahan city and test it through the real word data from 1-1-2000 to 7-6-2011. We propose a computer based system with three inputs and single output. The inputs include three sensors of solar ultraviolet (UV), total solar radiation (TSR) and total ozone (O3). And the output of the system is the predicted O3 of the next day and the alarm massages. A developed artificial intelligence (AI) algorithm is applied to determine the output, based on the inputs variables. For this issue, AI models, including supervised brain emotional learning (BEL), adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs), are compared in order to find the best model. The simulation of the proposed system shows that it can be used successfully in prediction of major cities ozone level.