This work introduces a novel deep learning-based approach for gravitational wave anomaly detection, aiming to overcome the limitations of traditional matched filtering techniques in identifying unknown waveform gravitational wave signals. We introduce a modified convolutional neural network architecture inspired by ResNet that leverages residual blocks to extract high-dimensional features, effectively capturing subtle differences between background noise and gravitational wave signals. This network architecture learns a high-dimensional projection while preserving discrepancies with the original input, facilitating precise identification of gravitational wave signals. In our experiments, we implement an innovative data augmentation strategy that generates new data by computing the arithmetic mean of multiple signal samples while retaining the key features of the original signals. In the NSF HDR A3D3: Detecting Anomalous Gravitational Wave Signals competition, it is honorable for us (group name: easonyan123) to get to the first place at the end with our model achieving a true negative rate (TNR) of 0.9708 during development/validation phase and 0.9832 on an unseen challenge dataset during final/testing phase, the highest among all competitors. These results demonstrate that our method not only achieves excellent generalization performance but also maintains robust adaptability in addressing the complex uncertainties inherent in gravitational wave anomaly detection.