The advent of deep learning has significantly propelled the capabilities of automated medical image diagnosis, providing valuable tools and resources in the realm of healthcare and medical diagnostics. This research delves into the development and evaluation of a Deep Residual Convolutional Neural Network (CNN) for the multi-class diagnosis of chest infections, utilizing chest X-ray images. The implemented model, trained and validated on a dataset amalgamated from diverse sources, demonstrated a robust overall accuracy of 93%. However, nuanced disparities in performance across different classes, particularly Fibrosis, underscored the complexity and challenges inherent in automated medical image diagnosis. The insights derived pave the way for future research, focusing on enhancing the model's proficiency in classifying conditions that present more subtle and nuanced visual features in the images, as well as optimizing and refining the model architecture and training process. This paper provides a comprehensive exploration into the development, implementation, and evaluation of the model, offering insights and directions for future research and development in the field.