The retrofitting techniques, which inject external resources into word representations, have compensated the weakness of distributed representations in semantic and relational knowledge between words. Implicitly retrofitting word vectors by expansional technique showed that the method outperforms retrofitting in word similarity task with generalization. In this paper, we propose deep extrofitting: in-depth stacking of extrofitting. We first stack extrofitting for word vector generalization. Next, we combine extrofitting with retrofitting, finding new vector space on specialization that prevents retrofitting from converging in a few iterations. When experimenting with GloVe, we show that our methods outperform the previous methods on most of word similarity task while requiring only synonyms as external resources. We also report further analysis on the effect of word vector specialization and word vector generalization in text classification task.