Reinforcement learners are agents that learn to pick actions that lead to high reward. Ideally, the value of a reinforcement learner's policy approaches optimality--where the optimal informed policy is the one which maximizes reward. Unfortunately, we show that if an agent is guaranteed to be "asymptotically optimal" in any (stochastically computable) environment, then subject to an assumption about the true environment, this agent will be either destroyed or incapacitated with probability 1; both of these are forms of traps as understood in the Markov Decision Process literature. Environments with traps pose a well-known problem for agents, but we are unaware of other work which shows that traps are not only a risk, but a certainty, for agents of a certain caliber. Much work in reinforcement learning uses an ergodicity assumption to avoid this problem. Often, doing theoretical research under simplifying assumptions prepares us to provide practical solutions even in the absence of those assumptions, but the ergodicity assumption in reinforcement learning may have led us entirely astray in preparing safe and effective exploration strategies for agents in dangerous environments. Rather than assuming away the problem, we present an agent with the modest guarantee of approaching the performance of a mentor, doing safe exploration instead of reckless exploration.