Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges in computational cost and memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. It preserves the original network's input/output structures, retains important features such as non-negativity, and the compressed model's activation patterns align with the original, thereby enhancing interpretability.