In this project, we develop a practical and efficient solution for automating the Manhwa translation from Indonesian to English. Our approach combines computer vision, text recognition, and natural language processing techniques to streamline the traditionally manual process of Manhwa(Korean comics) translation. The pipeline includes fine-tuned YOLOv5xu for speech bubble detection, Tesseract for OCR and fine-tuned MarianMT for machine translation. By automating these steps, we aim to make Manhwa more accessible to a global audience while saving time and effort compared to manual translation methods. While most Manhwa translation efforts focus on Japanese-to-English, we focus on Indonesian-to-English translation to address the challenges of working with low-resource languages. Our model shows good results at each step and was able to translate from Indonesian to English efficiently.