Decision-making for automated driving remains a challenging task. For their integration into real platforms, these algorithms must guarantee passenger safety and comfort while ensuring interpretability and an appropriate computational time. To model and solve this decision-making problem, we have developed a novel approach called COR-MP (Conservation of Resources model for Maneuver Planning). This model is based on the Conservation of Resources theory, a psychological concept applied to human behavior. COR-MP is based on various driving parameters, such as comfort, safety, or energy, and provides in real-time a profit value that enables us to quantify the impact of a decision on the decision-maker. Our method has been tested and validated through closed-loop simulations using RTMaps middleware, and preliminary results have been obtained by testing COR-MP on a real vehicle.