Enabling passive sensing of the environment using cellular base stations (BSs) will be one of the disruptive features of the sixth-generation (6G) networks. However, accurate localization and positioning of objects are challenging to achieve as multipath significantly degrades the reflected echos. Existing localization techniques perform well under the assumption of large bandwidth available but perform poorly in bandwidth-limited scenarios. To alleviate this problem, in this work, we introduce a 5G New Radio (NR)-based cooperative multi-monostatic sensing framework for passive target localization that operates in the Frequency Range 1 (FR1) band. We propose a novel fusion-based estimation process that can mitigate the effect of multipath by assigning appropriate weight to the range estimation of each BS. Extensive simulation results using ray-tracing demonstrate the efficacy of the proposed multi-sensing framework in bandwidth-limited scenarios.