https://github.com/TruongKhang/cLODE; https://hub.docker.com/r/kim4375731/clode.
This paper addresses imitation learning for motion prediction problem in autonomous driving, especially in multi-agent setting. Different from previous methods based on GAN, we present the conditional latent ordinary differential equation (cLODE) to leverage both the generative strength of conditional VAE and the continuous representation of neural ODE. Our network architecture is inspired from the Latent-ODE model. The experiment shows that our method outperform the baseline methods in the simulation of multi-agent driving and is very efficient in term of GPU memory consumption. Our code and docker image are publicly available: