A simple graph on $n$ vertices may contain a lot of maximum cliques. But how many can it potentially contain? We will show that the maximum number of maximum cliques is taken over so-called cliqueful graphs, more specifically, later we will show that it is taken over saturated composite cliqueful graphs, if $n \ge 15$. Using this we will show that the graph that contains $3^{\lfloor n/3 \rfloor}c$ maxcliques has the most number of maxcliques on $n$ vertices, where $c\in\{1,\frac{4}{3},2\}$, depending on $n \text{ mod } 3$.