This paper proposes a method for classifying movie genres by only looking at text reviews. The data used are from Large Movie Review Dataset v1.0 and IMDb. This paper compared a K-nearest neighbors (KNN) model and a multilayer perceptron (MLP) that uses tf-idf as input features. The paper also discusses different evaluation metrics used when doing multi-label classification. For the data used in this research, the KNN model performed the best with an accuracy of 55.4\% and a Hamming loss of 0.047.