This document provides responses to the FDA's request for public comments (Docket No FDA 2023 N 4853) on the role of digital health technologies (DHTs) in detecting prediabetes and undiagnosed type 2 diabetes. It explores current DHT applications in prevention, detection, treatment and reversal of prediabetes, highlighting AI chatbots, online forums, wearables and mobile apps. The methods employed by DHTs to capture health signals like glucose, diet, symptoms and community insights are outlined. Key subpopulations that could benefit most from remote screening tools include rural residents, minority groups, high-risk individuals and those with limited healthcare access. Capturable high-impact risk factors encompass glycemic variability, cardiovascular parameters, respiratory health, blood biomarkers and patient reported symptoms. An array of non-invasive monitoring tools are discussed, although further research into their accuracy for diverse groups is warranted. Extensive health datasets providing immense opportunities for AI and ML based risk modeling are presented. Promising techniques leveraging EHRs, imaging, wearables and surveys to enhance screening through AI and ML algorithms are showcased. Analysis of social media and streaming data further allows disease prediction across populations. Ongoing innovation focused on inclusivity and accessibility is highlighted as pivotal in unlocking DHTs potential for transforming prediabetes and diabetes prevention and care.