This research introduces a novel hydrofoil-based propulsion framework for unmanned aquatic robots, inspired by the undulating locomotion observed in select aquatic species. The proposed system incorporates a camber-modulating mechanism to enhance hydrofoil propulsive force generation and eventually efficiency. Through dynamic simulations, we validate the effectiveness of the camber-adjusting hydrofoil compared to a symmetric counterpart. The results demonstrate a significant improvement in horizontal thrust, emphasizing the potential of the cambering approach to enhance propulsive performance. Additionally, a prototype flipper design is presented, featuring individual control of heave and pitch motions, as well as a camber-adjustment mechanism. The integrated system not only provides efficient water-based propulsion but also offers the capacity for generating vertical forces during take-off maneuvers for seaplanes. The design is tailored to harness wave energy, contributing to the exploration of alternative energy resources. This work advances the understanding of bionic oscillatory principles for aquatic robots and provides a foundation for future developments in environmentally safe and agile underwater exploration.