Generative artificial intelligence tools like large language models are rapidly transforming academic research and real world applications. However, discussions on ethical guidelines for generative AI in science remain fragmented, underscoring the urgent need for consensus based standards. This paper offers an initial framework by developing analyses and mitigation strategies across five key themes: understanding model limitations regarding truthfulness and bias; respecting privacy, confidentiality, and copyright; avoiding plagiarism and policy violations when incorporating model output; ensuring applications provide overall benefit; and using AI transparently and reproducibly. Common scenarios are outlined to demonstrate potential ethical violations. We argue that global consensus coupled with professional training and reasonable enforcement are critical to promoting the benefits of AI while safeguarding research integrity.