This paper explores the parallels between Thompson's "Reflections on Trusting Trust" and modern challenges in LLM-based code generation. We examine how Thompson's insights about compiler backdoors take on new relevance in the era of large language models, where the mechanisms for potential exploitation are even more opaque and difficult to analyze. Building on this analogy, we discuss how the statistical nature of LLMs creates novel security challenges in code generation pipelines. As a potential direction forward, we propose an ensemble-based validation approach that leverages multiple independent models to detect anomalous code patterns through cross-model consensus. This perspective piece aims to spark discussion about trust and validation in AI-assisted software development.