This thesis develops a conceptual framework considering social data as representing the surface layer of a hierarchy of human social behaviours, needs and cognition which is employed to transform social data into representations that preserve social behaviours and their causalities. Based on this framework two platforms were built to capture insights from fast-paced and slow-paced social data. For fast-paced, a self-structuring and incremental learning technique was developed to automatically capture salient topics and corresponding dynamics over time. An event detection technique was developed to automatically monitor those identified topic pathways for significant fluctuations in social behaviours using multiple indicators such as volume and sentiment. This platform is demonstrated using two large datasets with over 1 million tweets. The separated topic pathways were representative of the key topics of each entity and coherent against topic coherence measures. Identified events were validated against contemporary events reported in news. Secondly for the slow-paced social data, a suite of new machine learning and natural language processing techniques were developed to automatically capture self-disclosed information of the individuals such as demographics, emotions and timeline of personal events. This platform was trialled on a large text corpus of over 4 million posts collected from online support groups. This was further extended to transform prostate cancer related online support group discussions into a multidimensional representation and investigated the self-disclosed quality of life of patients (and partners) against time, demographics and clinical factors. The capabilities of this extended platform have been demonstrated using a text corpus collected from 10 prostate cancer online support groups comprising of 609,960 prostate cancer discussions and 22,233 patients.