Prediction is a classic challenge in spatial statistics and the inclusion of spatial covariates can greatly improve predictive performance when incorporated into a model with latent spatial effects. It is desirable to develop flexible regression models that allow for nonlinearities and interactions in the covariate structure. Machine learning models have been suggested in the spatial context, allowing for spatial dependence in the residuals, but fail to provide reliable uncertainty estimates. In this paper, we investigate a novel combination of a Gaussian process spatial model and a Bayesian Additive Regression Tree (BART) model. The computational burden of the approach is reduced by combining Markov chain Monte Carlo (MCMC) with the Integrated Nested Laplace Approximation (INLA) technique. We study the performance of the method via simulations and use the model to predict anthropometric responses, collected via household cluster samples in Kenya.