In response to the burgeoning global demand for premium agricultural products, particularly within the competitive nut market, this paper introduces an innovative methodology aimed at enhancing the grading process for almonds and their shells. Leveraging state-of-the-art Deep Convolutional Neural Networks (CNNs), specifically the AlmondNet-20 architecture, our study achieves exceptional accuracy exceeding 99%, facilitated by the utilization of a 20-layer CNN model. To bolster robustness in differentiating between almonds and shells, data augmentation techniques are employed, ensuring the reliability and accuracy of our classification system. Our model, meticulously trained over 1000 epochs, demonstrates remarkable performance, boasting an accuracy rate of 99% alongside a minimal loss function of 0.0567. Rigorous evaluation through test datasets further validates the efficacy of our approach, revealing impeccable precision, recall, and F1-score metrics for almond detection. Beyond its technical prowess, this advanced classification system offers tangible benefits to both industry experts and non-specialists alike, ensuring globally reliable almond classification. The application of deep learning algorithms, as showcased in our study, not only enhances grading accuracy but also presents opportunities for product patents, thereby contributing to the economic value of our nation. Through the adoption of cutting-edge technologies such as the AlmondNet-20 model, we pave the way for future advancements in agricultural product classification, ultimately enriching global trade and economic prosperity.