Recognizing seismic waves immediately is very important for the realization of efficient disaster prevention. Generally these systems consist of a network of seismic detectors that send real time data to a central server. The server elaborates the data and attempts to recognize the first signs of an earthquake. The current problem with this approach is that it is subject to false alarms. A critical trade-off exists between sensitivity of the system and error rate. To overcame this problems, an artificial neural network based intelligent learning systems can be used. However, conventional supervised ANN systems are difficult to train, CPU intensive and prone to false alarms. To surpass these problems, here we attempt to use a next-generation unsupervised cortical algorithm HTM. This novel approach does not learn particular waveforms, but adapts to continuously fed data reaching the ability to discriminate between normality (seismic sensor background noise in no-earthquake conditions) and anomaly (sensor response to a jitter or an earthquake). Main goal of this study is test the ability of the HTM algorithm to be used to signal earthquakes automatically in a feasible disaster prevention system. We describe the methodology used and give the first qualitative assessments of the recognition ability of the system. Our preliminary results show that the cortical algorithm used is very robust to noise and that can successfully recognize synthetic earthquake-like signals efficiently and reliably.