In land surveying, the generation of maps was greatly simplified with the introduction of orthophotos and at a later stage with airborne LiDAR laser scanning systems. While the original purpose of LiDAR systems was to determine the altitude of ground elevations, newer full wave systems provide additional information that can be used on classifying the type of ground cover and the generation of maps. The LiDAR resulting point clouds are huge, multidimensional data sets that need to be grouped in classes of ground cover. We propose a genetic algorithm that aids in classifying these data sets and thus make them usable for map generation. A key feature are tailor-made genetic operators and fitness functions for the subject. The algorithm is compared to a traditional k-means clustering.