Ship emissions can form linear cloud features, or ship tracks, when atmospheric water vapor condenses on aerosols in the ship exhaust. These features are of interest because they are observable and traceable examples of marine cloud brightening, a mechanism that has been studied as a potential approach for solar climate intervention. Ship tracks can be observed throughout the diurnal cycle via space-borne assets like the Advanced Baseline Imagers on the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites, the GOES-R series. Due to complex atmospheric dynamics, it can be difficult to track these aerosol perturbations over space and time to precisely characterize how long a single emission source can significantly contribute to indirect radiative forcing. We combine GOES-17 satellite imagery with ship location information to demonstrate two feasible methods of tracing the trajectories of ship-emitted aerosols after they begin mixing with low boundary layer clouds in three test cases. The first method uses the parcel trajectory model HYSPLIT, which was driven by well-studied physical processes but often could not follow the ship track beyond 8 hours. The second method uses the image processing technique, optical flow, which could follow the track throughout its lifetime, but requires high contrast features for best performance. These approaches show that ship tracks persist as visible, linear features beyond 9 hr and sometimes longer than 24 hr. This research sets the stage for a more thorough exploration of the atmospheric conditions and exhaust compositions that produce ship tracks and factors that determine track persistence.