In this paper, we consider the problem of distributed reachable set computation for multi-agent systems (MASs) interacting over an undirected, stationary graph. A full state-feedback control input for such MASs depends no only on the current agent's state, but also of its neighbors. However, in most MAS applications, the dynamics are obscured by individual agents. This makes reachable set computation, in a fully distributed manner, a challenging problem. We utilize the ideas of polytopic reachable set approximation and generalize it to a MAS setup. We formulate the resulting sub-problems in a fully distributed manner and provide convergence guarantees for the associated computations. The proposed algorithm's convergence is proved for two cases: static MAS graphs, and time-varying graphs under certain restrictions.