A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing and communication (ISAC) dual-secure communication system is studied in this paper. The sensed target and legitimate users (LUs) are situated on the opposite sides of the STAR-RIS, and the energy splitting and time switching protocols are applied in the STAR-RIS, respectively. The long-term average security rate for LUs is maximized by the joint design of the base station (BS) transmit beamforming and receive filter, along with the STAR-RIS transmitting and reflecting coefficients, under guarantying the echo signal-to-noise ratio thresholds and rate constraints for the LUs. Since the channel information changes over time, conventional convex optimization techniques cannot provide the optimal performance for the system, and result in excessively high computational complexity in the exploration of the long-term gains for the system. Taking continuity control decisions into account, the deep deterministic policy gradient and soft actor-critic algorithms based on off-policy are applied to address the complex non-convex problem. Simulation results comprehensively evaluate the performance of the proposed two reinforcement learning algorithms and demonstrate that STAR-RIS is remarkably better than the two benchmarks in the ISAC system.