The increasing demand for scalable, efficient resource management in hybrid cloud environments has led to the exploration of AI-driven approaches for dynamic resource allocation. This paper presents an AI-driven framework for resource allocation among microservices in hybrid cloud platforms. The framework employs reinforcement learning (RL)-based resource utilization optimization to reduce costs and improve performance. The framework integrates AI models with cloud management tools to respond to challenges of dynamic scaling and cost-efficient low-latency service delivery. The reinforcement learning model continuously adjusts provisioned resources as required by the microservices and predicts the future consumption trends to minimize both under- and over-provisioning of resources. Preliminary simulation results indicate that using AI in the provision of resources related to costs can reduce expenditure by up to 30-40% compared to manual provisioning and threshold-based auto-scaling approaches. It is also estimated that the efficiency in resource utilization is expected to improve by 20%-30% with a corresponding latency cut of 15%-20% during the peak demand periods. This study compares the AI-driven approach with existing static and rule-based resource allocation methods, demonstrating the capability of this new model to outperform them in terms of flexibility and real-time interests. The results indicate that reinforcement learning can make optimization of hybrid cloud platforms even better, offering a 25-35% improvement in cost efficiency and the power of scaling for microservice-based applications. The proposed framework is a strong and scalable solution to managing cloud resources in dynamic and performance-critical environments.