This brief constructs the adaptive backstepping control scheme for a class of pure-feedback systems with input delay and full state constraints. With the help of Mean Value Theorem, the pure-feedback system is transformed into strict-feedback one. Barrier Lyapunov functions are employed to guarantee all of the states remain constrained within predefined sets. By introducing the Pade approximation method and corresponding intermediate, the impact generated by input delay on the output tracking performance of the system can be eliminated. Furthermore, a low-pass filter driven by a newly-defined control input, is employed to generate the actual control input, which facilitates the design of backstepping control. To approximate the unknown functions with a desired level of accuracy, the fuzzy logic systems (FLSs) are utilized by choosing appropriate fuzzy rules, logics and so on. The minimal learning parameter (MLP) technique is employed to decrease the number of nodes and parameters in FLSs, and dynamic surface control (DSC) technique is leveraged to avoid so-called "explosion of complexity". Moreover, smooth robust compensators are introduced to circumvent the influences of external disturbance and approximation errors. By stability analysis, it is proved that all of signals in the closed-loop system are semi-globally ultimately uniform bounded, and the tracking error can be within a arbitrary small neighbor of origin via selecting appropriate parameters of controllers. Finally, the results of numerical illustration are provided to demonstrate the effectiveness of the designed method.