Accurate determination of the equation of state of dense hydrogen is essential for understanding gas giants. Currently, there is still no consensus on methods for calculating its entropy, which play a fundamental role and can result in qualitatively different predictions for Jupiter's interior. Here, we investigate various aspects of entropy calculation for dense hydrogen based on ab initio molecular dynamics simulations. Specifically, we employ the recently developed flow matching method to validate the accuracy of the traditional thermodynamic integration approach. We then clearly identify pitfalls in previous attempts and propose a reliable framework for constructing the hydrogen equation of state, which is accurate and thermodynamically consistent across a wide range of temperature and pressure conditions. This allows us to conclusively address the long-standing discrepancies in Jupiter's adiabat among earlier studies, demonstrating the potential of our approach for providing reliable equations of state of diverse materials.