Describing the dynamics of many-electron quantum systems is crucial for applications such as predicting electronic structures in quantum chemistry, the properties of condensed matter systems, and the behaviors of complex materials. However, the real-time evolution of non-equilibrium quantum electronic systems poses a significant challenge for theoretical and computational approaches, due to the system's exploration of a vast configuration space. This work introduces a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations by capturing many-body correlations. The proposed methodology involves parameterizing the time-evolving quantum state, enabling the approximation of the state's evolution. To account for electron correlations, we employ time-dependent Jastrow factors and backflow transformations. We also show that we can incorporate neural networks to parameterize these functions. The time-dependent variational Monte Carlo technique is employed to efficiently compute the optimal time-dependent parameters. The approach is demonstrated in three distinct systems: the solvable harmonic interaction model, the dynamics of a diatomic molecule in intense laser fields, and a quenched quantum dot. In all cases, we show clear signatures of many-body correlations in the dynamics not captured by mean-field methods. The results showcase the ability of our variational approach to accurately capture the time evolution of quantum states, providing insight into the quantum dynamics of interacting electronic systems, beyond the capabilities of mean-field.