We present a framework for operating a self-adaptive RIS inside a fading rich-scattering wireless environment. We model the rich-scattering wireless channel as being double-parametrized by (i) the RIS, and (ii) dynamic perturbers (moving objects, etc.). Within each coherence time, first, the self-adaptive RIS estimates the status of the dynamic perturbers (e.g., the perturbers' orientations and locations) based on measurements with an auxiliary wireless channel. Then, second, using a learned surrogate forward model of the mapping from RIS configuration and perturber status to wireless channel, an optimized RIS configuration to achieve a desired functionality is obtained. We demonstrate our technique using a physics-based end-to-end model of RIS-parametrized communication with adjustable fading (PhysFad) for the example objective of maximizing the received signal strength indicator. Our results present a route toward convergence of RIS-empowered localization and sensing with RIS-empowered channel shaping beyond the simple case of operation in free space without fading.