In recent years, mobile Internet has accelerated the proliferation of smart mobile development. The mobile payment, mobile security and privacy protection have become the focus of widespread attention. Iris recognition becomes a high-security authentication technology in these fields, it is widely used in distinct science fields in biometric authentication fields. The Convolutional Neural Network (CNN) is one of the mainstream deep learning approaches for image recognition, whereas its anti-noise ability is weak and needs a certain amount of memory to train in image classification tasks. Under these conditions we put forward a fine-tuning neural network model based on the Mask R-CNN and Inception V4 neural network model, which integrates every component in an overall system that combines the iris detection, extraction, and recognition function as an iris recognition system. The proposed framework has the characteristics of scalability and high availability; it not only can learn part-whole relationships of the iris image but also enhancing the robustness of the whole framework. Importantly, the proposed model can be trained using the different spectrum of samples, such as Visible Wavelength (VW) and Near Infrared (NIR) iris biometric databases. The recognition average accuracy of 99.10% is achieved while executing in the mobile edge calculation device of the Jetson Nano.