This project aims to revolutionize drone flight control by implementing a nonlinear Deep Reinforcement Learning (DRL) agent as a replacement for traditional linear Proportional Integral Derivative (PID) controllers. The primary objective is to seamlessly transition drones between manual and autonomous modes, enhancing responsiveness and stability. We utilize the Proximal Policy Optimization (PPO) reinforcement learning strategy within the Gazebo simulator to train the DRL agent. Adding a $20,000 indoor Vicon tracking system offers <1mm positioning accuracy, which significantly improves autonomous flight precision. To navigate the drone in the shortest collision-free trajectory, we also build a 3 dimensional A* path planner and implement it into the real flight successfully.