The parametrization of wireless channels by so-called "beyond-diagonal reconfigurable intelligent surfaces" (BD-RIS) is mathematically characterized by a matrix whose off-diagonal entries are partially or fully populated. Physically, this corresponds to tunable coupling mechanisms between the RIS elements that originate from the RIS control circuit. Here, we derive a physics-compliant diagonal representation for BD-RIS-parametrized channels. Recognizing that the RIS control circuit, irrespective of its detailed architecture, can always be represented as a multi-port network with auxiliary ports terminated by tunable individual loads, we physics-compliantly express the BD-RIS-parametrized channel as a multi-port chain cascade of i) radio environment, ii) static parts of the control circuit, and iii) individually tunable loads. Thus, the cascade of the former two systems is terminated by a system that is mathematically always characterized by a diagonal matrix. This physics-compliant diagonal representation implies that existing algorithms for channel estimation and optimization for conventional ("diagonal") RIS can be readily applied to BD-RIS scenarios. We demonstrate this in an experimentally grounded case study. Importantly, we highlight that, operationally, an ambiguous characterization of the cascade of radio environment and the static parts of the control circuit is required, but not the breakdown into the characteristics of its two constituent systems nor the lifting of the ambiguities. Nonetheless, we demonstrate how to derive or estimate the characteristics of the static parts of the control circuit for pedagogical purposes. The diagonal representation of BD-RIS-parametrized channels also enables their treatment with coupled-dipole-based models. We furthermore derive the assumptions under which the physics-compliant BD-RIS model simplifies to the widespread linear cascaded model.