We introduce PPBoot: a bootstrap-based method for prediction-powered inference. PPBoot is applicable to arbitrary estimation problems and is very simple to implement, essentially only requiring one application of the bootstrap. Through a series of examples, we demonstrate that PPBoot often performs nearly identically to (and sometimes better than) the earlier PPI(++) method based on asymptotic normality$\unicode{x2013}$when the latter is applicable$\unicode{x2013}$without requiring any asymptotic characterizations. Given its versatility, PPBoot could simplify and expand the scope of application of prediction-powered inference to problems where central limit theorems are hard to prove.