When two pedestrians approach each other on the sidewalk head-on, they sometimes engage in an awkward interaction, both deviating to the same side (repeatedly) to avoid a collision. This phenomenon is known as the sidewalk salsa. Although well known, no existing model describes how this "dance" arises. Such a model must capture the nuances of individual interactions between pedestrians that lead to the sidewalk salsa. Therefore, it could be helpful in the development of mobile robots that frequently participate in such individual interactions, for example, by informing robots in their decision-making. Here, I present a model based on the communication-enabled interaction framework capable of reproducing the sidewalk salsa. The model assumes pedestrians have a deterministic plan for their future movements and a probabilistic belief about the movements of another pedestrian. Combined, the plan and belief result in a perceived risk that pedestrians try to keep below a personal threshold. In simulations of this model, the sidewalk salsa occurs in a symmetrical scenario. At the same time, it shows behavior comparable to observed real-world pedestrian behavior in scenarios with initial position offsets or risk threshold differences. Two other scenarios provide support for a hypothesis from previous literature stating that cultural norms, in the form of a biased belief about on which side others will pass (i.e. deviating to the left or right), contribute to the occurrence of the sidewalk salsa. Thereby, the proposed model provides insight into how the sidewalk salsa arises.