The following article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). In recent years, there has been extensive research on DRL techniques, but without considering realistic, flexible and human-centered shopfloors. A research gap can be identified in the context of make-to-order oriented discontinuous manufacturing as it is often represented in medium-size companies with high service levels. From practical industry projects in this domain, we recognize requirements to depict flexible machines, human workers and capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-depended setup times and (partially) automated tasks. On the other hand, intensive research has been done on metaheuristics in the context of DRC-FJSSP. However, there is a lack of suitable and generic scheduling methods that can be holistically applied in sociotechnical production and assembly processes. In this paper, we first formulate an extended DRC-FJSSP induced by the practical requirements mentioned. Then we present our proposed hybrid framework with parallel computing for multicriteria optimization. Through numerical experiments with real-world data, we confirm that the framework generates feasible schedules efficiently and reliably. Utilizing DRL instead of random operations leads to better results and outperforms traditional approaches.