Using AI to write formal proofs for mathematical problems is a challenging task that has seen some advancements in recent years. Automated systems such as Lean can verify the correctness of proofs written in formal language, yet writing the proofs in formal language can be challenging for humans and machines. The miniF2F benchmark has 20 IMO problems in its testing set, yet formal proofs are available only for 7 of these problems (3 of which are written only by mathematicians). The model with best accuracy can only prove 4 of these 20 IMO problems, from 1950s and 60s, while its training set is a secret. In this work, we write complete, original formal proofs for the remaining 13 IMO problems in Lean along with 3 extra problems from IMO 2022 and 2023. This effort expands the availability of proof currently in the public domain by creating 5,150 lines of Lean proof. The goal of the paper is to pave the way for developing AI models that can automatically write the formal proofs for all the IMO problems in miniF2F and beyond. In this pursuit, we devise a method to decompose the proof of these problems into their building blocks, constructing a dataset of about 900 lemmas with 25,500 lines of Lean code. These lemmas are not trivial, yet they are approachable, providing the opportunity to evaluate and diagnose the failures and successes of AI models. We then evaluate the ability of GPT-4 in writing formal proofs for these lemmas with zero shot prompting, CoT reasoning and lemma retrieval. In evaluating the responses, we also analyze the confounding factor of LLM's ability to write the proofs in natural language vs Lean language.