Precise and timely fault diagnosis is a prerequisite for a distribution system to ensure minimum downtime and maintain reliable operation. This necessitates access to a comprehensive procedure that can provide the grid operators with insightful information in the case of a fault event. In this paper, we propose a heterogeneous multi-task learning graph neural network (MTL-GNN) capable of detecting, locating and classifying faults in addition to providing an estimate of the fault resistance and current. Using a graph neural network (GNN) allows for learning the topological representation of the distribution system as well as feature learning through a message-passing scheme. We investigate the robustness of our proposed model using the IEEE-123 test feeder system. This work also proposes a novel GNN-based explainability method to identify key nodes in the distribution system which then facilitates informed sparse measurements. Numerical tests validate the performance of the model across all tasks.