A novel unified framework of geometry-based stochastic models (GBSMs) for the fifth generation (5G) wireless communication systems is proposed in this paper. The proposed general 5G channel model aims at capturing small-scale fading channel characteristics of key 5G communication scenarios, such as massive multiple-input multiple-output (MIMO), high-speed train (HST), vehicle-to-vehicle (V2V), and millimeter wave (mmWave) communication scenarios. It is a three-dimensional (3D) non-stationary channel model based on the WINNER II and Saleh-Valenzuela (SV) channel models considering array-time cluster evolution. Moreover, it can easily be reduced to various simplified channel models by properly adjusting model parameters. Statistical properties of the proposed general 5G small-scale fading channel model are investigated to demonstrate its capability of capturing channel characteristics of various scenarios, with excellent fitting to some corresponding channel measurements.