This paper provides a computational analysis of poetry reading audio signals at a large scale to unveil the musicality within professionally-read poems. Although the acoustic characteristics of other types of spoken language have been extensively studied, most of the literature is limited to narrative speech or singing voice, discussing how different they are from each other. In this work, we develop signal processing methods, which are tailored to capture the unique acoustic characteristics of poetry reading based on their silence patterns, temporal variations of local pitch, and beat stability. Our large-scale statistical analyses on three big corpora, each of which consists of narration (LibriSpeech), singing voice (Intonation), and poetry reading (from The Poetry Foundation), discover that poetry reading does share some musical characteristics with singing voice, although it may also resemble narrative speech.