Accurately detecting and predicting lane change (LC)processes can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This paper focuses on LC processes and compares different machine learning methods' performance to recognize LC intention from high-dimensionality time series data. To validate the performance of the proposed models, a total number of 1023 vehicle trajectories is extracted from the CitySim dataset. For LC intention recognition issues, the results indicate that with ninety-eight percent of classification accuracy, ensemble methods reduce the impact of Type II and Type III classification errors. Without sacrificing recognition accuracy, the LightGBM demonstrates a sixfold improvement in model training efficiency than the XGBoost algorithm.