Author names often suffer from ambiguity owing to the same author appearing under different names and multiple authors possessing similar names. It creates difficulty in associating a scholarly work with the person who wrote it, thereby introducing inaccuracy in credit attribution, bibliometric analysis, search-by-author in a digital library, and expert discovery. A plethora of techniques for disambiguation of author names has been proposed in the literature. I try to focus on the research efforts targeted to disambiguate author names. I first go through the conventional methods, then I discuss evaluation techniques and the clustering model which finally leads to the Bayesian learning and Greedy agglomerative approach. I believe this concentrated review will be useful for the research community because it discusses techniques applied to a very large real database that is actively used worldwide. The Bayesian and the greedy agglomerative approach used will help to tackle AND problems in a better way. Finally, I try to outline a few directions for future work