Abstract:This paper presents an original approach for jointly fitting survival times and classifying samples into subgroups. The Coxlogit model is a generalized linear model with a common set of selected features for both tasks. Survival times and class labels are here assumed to be conditioned by a common risk score which depends on those features. Learning is then naturally expressed as maximizing the joint probability of subgroup labels and the ordering of survival events, conditioned to a common weight vector. The model is estimated by minimizing a regularized log-likelihood through a coordinate descent algorithm. Validation on synthetic and breast cancer data shows that the proposed approach outperforms a standard Cox model or logistic regression when both predicting the survival times and classifying new samples into subgroups. It is also better at selecting informative features for both tasks.