Abstract:Dynamic metasurface antennas (DMAs), surfaces patterned with reconfigurable metamaterial elements (meta-atoms) that couple waves from waveguides or cavities to free space, are a promising technology to realize 6G wireless base stations and access points with low cost and power consumption. Mutual coupling between the DMA's meta-atoms results in a non-linear dependence of the radiation pattern on the DMA configuration, significantly complicating modeling and optimization. Therefore, mutual coupling has to date been considered a vexing nuance that is frequently neglected in theoretical studies and deliberately mitigated in experimental prototypes. Here, we demonstrate the overlooked property of mutual coupling to boost the control over the DMA's radiation pattern. Based on a physics-compliant DMA model, we demonstrate that the radiation pattern's sensitivity to the DMA configuration significantly depends on the mutual coupling strength. We further evidence how the enhanced sensitivity under strong mutual coupling translates into a higher fidelity in radiation pattern synthesis, benefiting applications ranging from dynamic beamforming to end-to-end optimized sensing and imaging. Our insights suggest that DMA design should be fundamentally rethought to embrace the benefits of mutual coupling. We also discuss ensuing future research directions related to the frugal characterization of DMAs based on compact physics-compliant models.
Abstract:We experimentally investigate the feasibility of evaluating multiple-input multiple-output (MIMO) radio equipment under adjustable Rician fading channel conditions in a programmable-metasurface-stirred (PM-stirred) reverberation chamber (RC). Whereas within the "smart radio environment" paradigm PMs offer partial control over the channels to the wireless system, in our use case the PM emulates the uncontrollable fading. We implement a desired Rician K-factor by sweeping a suitably sized subset of all meta-atoms through random configurations. We discover in our setup an upper bound on the accessible K-factors for which the statistics of the channel coefficient distributions closely follow the sought-after Rician distribution. We also discover a lower bound on the accessible K-factors in our setup: there are unstirred paths that never encounter the PM, and paths that encounter the PM are not fully stirred because the average of the meta-atoms' accessible polarizability values is not zero (i.e., the meta-atoms have a non-zero "structural" cross-section). We corroborate these findings with experiments in an anechoic chamber, physics-compliant PhysFad simulations with Lorentzian vs "ideal" meta-atoms, and theoretical analysis. Our work clarifies the scope of applicability of PM-stirred RCs for MIMO Rician channel emulation, as well as electromagnetic compatibility test.
Abstract:Wireless networks-on-chip (WNoCs) are an enticing complementary interconnect technology for multi-core chips but face severe resource constraints. Being limited to simple on-off-keying modulation, the reverberant nature of the chip enclosure imposes limits on allowed modulation speeds in sight of inter-symbol interference, casting doubts on the competitiveness of WNoCs as interconnect technology. Fortunately, this vexing problem was recently overcome by parametrizing the on-chip radio environment with a reconfigurable intelligent surface (RIS). By suitably configuring the RIS, selected channel impulse responses (CIRs) can be tuned to be (almost) pulse-like despite rich scattering thanks to judiciously tailored multi-bounce path interferences. However, the exploration of this "over-the-air" (OTA) equalization is thwarted by (i) the overwhelming complexity of the propagation environment, and (ii) the non-linear dependence of the CIR on the RIS configuration, requiring a costly and lengthy full-wave simulation for every optimization step. Here, we show that a reduced-basis physics-compliant model for RIS-parametrized WNoCs can be calibrated with a single full-wave simulation. Thereby, we unlock the possibility of predicting the CIR for any RIS configuration almost instantaneously without any additional full-wave simulation. We leverage this new tool to systematically explore OTA equalization in RIS-parametrized WNoCs regarding the optimal choice of delay time for the RIS-shaped CIR's peak. We also study the simultaneous optimization of multiple on-chip wireless links for broadcasting. Looking forward, the introduced tools will enable the efficient exploration of various types of OTA analog computing in RIS-parametrized WNoCs.
Abstract:The reconfigurability of radio environments with programmable metasurfaces is considered a key feature of next-generation wireless networks. Identifying suitable metasurface configurations for desired wireless functionalities requires a precise setting-specific understanding of the intricate impact of the metasurface configuration on the wireless channels. Yet, to date, the relevant short and long-range correlations between the meta-atoms due to proximity and reverberation are largely ignored rather than precisely captured. Here, we experimentally demonstrate that a compact model derived from first physical principles can precisely predict how wireless channels in complex scattering environments depend on the programmable-metasurface configuration. The model is calibrated using a very small random subset of all possible metasurface configurations and without knowing the setup's geometry. Our approach achieves two orders of magnitude higher precision than a deep learning-based digital-twin benchmark while involving hundred times fewer parameters. Strikingly, when only phaseless calibration data is available, our model can nonetheless retrieve the precise phase relations of the scattering matrix as well as their dependencies on the metasurface configuration. Thereby, we achieve coherent wave control (focusing or enhancing absorption) and phase-shift-keying backscatter communications without ever having measured phase information. Finally, our model is also capable of retrieving the essential properties of scattering coefficients for which no calibration data was ever provided. These unique generalization capabilities of our pure-physics model significantly alleviate the measurement complexity. Our approach is also directly relevant to dynamic metasurface antennas, microwave-based signal processors as well as emerging in situ reconfigurable nanophotonic, optical and room-acoustical systems.
Abstract:Physics-compliant channel models of RIS-parametrized radio environments require the inversion of an "interaction matrix" to capture the mutual coupling between wireless entities (transmitters, receivers, RIS, environmental scattering objects) due to proximity and reverberation. The computational cost of this matrix inversion is typically dictated by the environmental scattering objects in non-trivial radio environments, and scales unfavorably with the latter's complexity. In addition, many problems of interest in wireless communications (RIS optimization, fast fading, object or user-equipment localization, etc.) require the computation of multiple channel realizations. To overcome the potentially prohibitive computational cost of using physics-compliant channel models, we i) introduce an isospectral reduction of the interaction matrix from the canonical basis to an equivalent reduced basis of primary wireless entities (antennas and RIS), and ii) leverage the fact that interaction matrices for different channel realizations only differ regarding RIS configurations and/or some wireless entities' locations.